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THERMAL INSTABILITY OF BLASIUS FLOW 
ALONG HORIZONTAL PLATES 

RAY-SHING Wu and K. C. CHENC 

~e~rtmcnt of Mechanical Engineering, University of Alberta. Edmonton. Alberta, Canada 

Abstract-The thermal instability of laminar forced convection Row along a horizontai semi-infinite fiat 
plate heated isothermally from below or cooled isothermally from above is investigated for disturbances 
in the form of stationary longitudinal vortices which are periodic in the spanwise direction. The analysis 
uses non-parallel Row model considering the variation of the basic Row and temperature fields with the 
streamwise coordinate as well as the transverse velocity component in the disturbance equations, The 
critical values of the Grashof number Grl = Gr$/Re:” are obtained for Prandtl numbers ranging from 
lo-” to 104. The Prandtl and Reynolds numbers effects on vortex-type instability for Blasius flow along 

horizontal plates are clarified. 

a, wave number, 2n,fi; 

D, d/dr/: 

1 
@If -f‘)/2 ; 
dimensionless stream function; 

9, gravitational acceleration; 

G, eigenvalue, GrL/ReL. ; 

GIL, Grashof number based on L, g~(A~)~3/v~; 

Grx, Grashof number based on X, g/I(AT)X3/v2; 

L characteristic length, (vX/U,)‘;‘; 

M. number of divisions in p direction; 

P, pressure; 

Pr. Prandtl number, t&; 

P. dimensionless pressure, ~~(~~r~/~~~); 

R~L, Rex, Reynolds numbers, (U, L/v) = Rey2 

and (U, X/v), respectively; 

T, temperature; 
U, V, W, velocity components in X, Y, Z directions: 
11, D, $V, dimensionless perturbation velocities, 

(U’, v’, W’)/U, : 
X, Y, 2, rectangular coordinates: 
s. 2’. ,‘, dimensionless coordinates, (X, Y, Z),:L. 

Greek symbols 

a, thermal diffusivity; 

P. coefficient of thermal expansion; 

I?? similarity variable, Y,/L = Y(U,/vX)“- - y; 

0, dimensionless temperature disturbance. 
@/AT; 

I”, dimensionless wavelength of vortex rolls, 
2n/%; 

V. kinematic viscosity; 

it* density; 

I;T, 
dimensionless temperature, (Tr,- T, )/AT: 
temperature difference, (T, - T,). 

Subscripts and Superscripts 
* critical value or dimensionless disturbance 

amplitude; 
prime, disturbance quantity or 

differentiation with respect to tl; 

b, basic flow quantity; 
\V. value at wall; 

x, free stream condition. 

I. INTRODUCTION 

BUOYANCY effects in laminar forced convective flow 
over a heated horizontal semi-infinite flat plate were 
first studied by Mori [I] and Sparrow and Minkowycz 
[2] independently. These early studies apparently 
motivated further investigations [3-61 in recent years. 
When a horizontal laminar boundary layer is heated 
from below or cooled from above, the layer is poten- 
tially unstable because of its top-heavy situation due 
to the density variation of fluid with temperature. The 
situation is somewhat analogous to the thermal in- 
stability of plane Poiseuilie flow [7-lo] or the well- 
known Gortler instability of curved boundary layers 
[ll]. The problem of hydrodynamic stability for the 
laminar boundary layer involving the solution of Orr- 
Sommerfeld equation has been studied rather exten- 
sively in the past. In contrast, the thermal instability 
problem does not appear to have been reported in the 
literature. 

The purpose of this study is to determine theor- 
etically the conditions marking the onset of longi- 
tudinal vortex rolls in a horizontal Blasius flow where 
the flat plate is heated isothermally from below or 
cooled isothermally from above. After the onset of 

vortex rolls, the flow and temperature fields assume a 
three-dimensional character and the existing flow and 
heat-transfer results for laminar forced convection over 
a Bat plate may no longer apply. It is then obvious 
that the present problem is of considerable practical 
interest. 

2. THE BASIC FLOW 

Consideration is given to a horizontal laminar 
boundary-layer flow with free stream velocity U,, and 
free stream temperature T, along a flat plate where 
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the wall temperature Tu,( > T,) is constant. The laminar 
forced convection flow problem is governed by the 
following set of equations [ 121 

.f “’ + : ff’” = 0. (1) 

r” +:P,f? = 0 (2) 

with the boundary conditions 

j(O) = ,f”(O) = T(r; ) = 0, f’( J ) = T(O) = 1 (3) 

where the Blasius similarity variable is 

yI = Y(L’,.\‘X)’ 2 = Y:L(X) 

with L(X) = (1,X/L’, )’ ‘. the stream function tj = 
(vXU,)“‘,f‘(~), the normalized temperature r(q) = 
( Tb- Tx)/(T,,- T,) and Pr = v/r = Prandtl number. 

Equation (1) is solved by the fourth order Runge-Kutta 
method and the temperature distribution T is 

~~1ev(,-~!)‘dv) jdri 
r(‘)=f-l: [exp(~-~~~,‘d,,ild,,’ (4) 

The basic flow is a two-dimensional boundary-layer 
flow which depends on streamwise and transverse 
directions. 

3. THE THERMAL INSTABILITY PROBLEM 

To study the vortex instability of the basic Blasius 
flow heated from below (or cooled from above), the 

perturbation quantities are superimposed on the basic 
quantities as 

u = U,(X, Y)+L”(Y,z). v= I/h(X. Y)+v’(Y,Z), 

w= W’(Y,Z). T= &(X, Y)+o’(Y,z), 

P= P,-px .YYfP’(Y,Z). 

As discussed in [13,14], all the flow disturbance 
quantities are taken to be a function of Y and Z only 
for neutral stability involving Gortler vortices. Further 
details regarding the assumed form of disturbances 
and some experimental fact are explained clearly in 
[13]. After applying the linear stability theory and 
using Boussinesq approximation. the perturbation 
equations referring to the coordinate system shown in 
Fig. 1 become 

it,” i;W’ 

iY , -+ i7-=O. 
(6) 

where VT = ?“I? Yz +i2/?Z2 and the terms involving 
G, r’U,j?X and j.TQ?X are retained. The term 
U’?‘&‘?X is neglected following the boundary-layer 

Ftc;. I. Coordinate system and distribu- 
tions of basic quantities f’, F, T and 
perturbation amplitudes II*. r*. ft* for 

Pr = 0.7. 

approximation ?&,/iiX : 0. The nonparallelism of the 

basic flow is found to be important in recent investi- 
gations [13, 141 dealing with the vortex instability of 
natural convection flow on inclined isothermal plates. 
The basic flow and temperature quantities can be 
written in the following form 

Uh = U, f”(q), v, = (C/./2RrL)(qf”-Jj = (U,./Re,_)F, 

r, = T, +ATr@) (1 I) 

where ReL = [Ii,, L/l’ = (Cl, X/v)’ 2 = Rci2. F = 

(sf”-,f)/2 and AT = T,- T,. 

After introducing the following dimensionless vari- 
ables, (x, J = n, -7) = (X, Y, Z)!L(X), (u. L’, \v) = 
(U’, V’W’)/U,, p = P’/(pC’$/Re,), 0 = (?/AT the dis- 
turbance equations can be recast into the dimensionless 
form as 

(12) 

F ~ - &qf “u + ReL,f’“r = V2u. 
(71, 

(13) 

F $ + &,f”‘l: = 92,. _ g + G(). (14) 
‘J c !‘ 

where 

G = gfi(AT)LReL,‘U”, = Gr,/Rq,. 

GrL = g/J(AT)pjr’ = GrxjRe$2. 

Grx = gp(AT)X “iv’ and V’ = ;2,+.2 + ?‘,,+:2 
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Upon eliminating the dependent variable w and the 

pressure terms from equations (14) and (15) using con- 
tinuity equation (12), one obtains 

au 
V*u - F - + :qf”u = ReL f “0, 

ii)! 
(17) 

V’U-PrF”$ = Pr7’(ReLv-+p). (19) 

The boundary conditions are u = u = v’ = 0 = 0 at 

y = 0 and co. For the stationary longitudinal vortices 
which are periodic in the spanwise direction and 
neglecting the x-dependences [13, 141 at the neutral 
stability, the following disturbance forms are applicable. 

u = u+(y)exp(iaz), v = u+(y)exp(iaz), 

0 = f3+(y)exp(iaz). 
(20) 

The quantity a is the wave number of the disturbance. 
Substituting equation (20) into the perturbation equa- 
tions (17)-(19), the following set of equations results. 

[(D2-a2)-FD+~~f"]ut = ReLf”v’, (21) 

[(D” -Ll2)2 - F(D3 - a2D) 

-:q,f”(D’-a’)]~+ = a2GO+, (22) 

[(D’--a’)-PrFD]B+ = Prs’(Rq.v+ -$p+), (23) 

where D = djdy. By setting u+ = u*, ReLvt = v*, 
O+ = f3* and GReL = GrL, the parameter ReL does not 
appear explicitly and the resulting system of equations 
becomes 

[(D2-u2)-FD+&f”]u* = f"u*, (24) 

[(D’ - u2)2 - F(D3 - a2D) 
-$rlf”(D’-a2)]v* = a2GrLQ*, (25) 

[(D’ - a2) - PrFD]B* = PrT’(v* -:rp*). (26) 

The boundary conditions are 

u*=u*=Dv*=Q*=Oat~=Oandco. (27) 

For the conventional parallel flow assumption for 

the basic flow, the terms involving F as well as the 
x-derivatives of the basic quantities are neglected. In 
the disturbance equations, the terms on the R.H.S. 

may be regarded as the driving terms. Equations (24)- 
(27) form an eigenvalue problem and the solution will 
be effected by a numerical method. 

4. METHOD OF SOLUTION 

The fourth-order finite-difference scheme used in 
this study is due to Thomas [15] in his study on the 
stability of plane Poiseuille flow and the detailed 
derivations are given by Chen [16] in a study on the 
hydrodynamic stability of developing flow in a parallel- 
plate channel. In the present finite-difference solution, 
a finite value of q must be prescribed to satisfy the 
boundary conditions at q = cc [17]. For this purpose, 
two cases are considered depending on the value of 
Prandtl number. When Pr > 1, the condition at infinity 
for O* is replaced by 0” = 0 at q = q1 corresponding 

to z < lo-@ since as z + 0 one has 7’ -+ 0. Equation (26) 

reveals that the flow field is stable for the region 
q = q1 _ x. On the other hand, when Pr < 1 the 

boundary condition u * = 0 is set at ‘1 = q2 correspond- 

ing to (f'- 1) < lo-* and the conditions t’* = 0* = 0 
are set at q= q1(>q2) corresponding to 7 d 10e8. As 

f’ ---t I, one has f n + 0 and equation (24) shows that 
u* = 0 for the region q = q1 - c. Noting that with 
Pr < 1 the thickness of the thermal boundary layer is 
larger than that of the hydrodynamic boundary layer. 
one obtains c* = 0* = 0 for the region q = ty, - ,-L 
from equations (25) and (26). The satisfactory values 
for the step size Ay, the number of divisions M and 
the end position q1 for various Prandtl numbers are 
found by numerical experiments and the results are 
listed in Table 1 with q2 fixed at q2 = 10.4. 

Table 1. Numerical data for A)‘ M and q, 

Pr 0.01 0.1 0.7 1.0 IO IO2 IO” 
AL‘ 0.04 0.04 0.04 0.04 0.02 0.01 0.01 
ILI 1600 650 275 260 250 200 105 
‘II 64 24 I I 10.4 5.0 2.0 I .os 

The finite-difference technique transforms equation 
(25) and its boundary conditions into a quidiagonal 

system of matrix for a set of algebraic equations and 
similarly two diagonal systems result from equations 
(24) and (26) and their boundary conditions. The 

numerical solutions of the quidiagonal and tridiagonal 
systems are reported in [18] and [19]. respectively, 
and will not be elaborated here. 

The iterative procedure for the simultaneous solution 
of the three perturbation equations consists of the 
following main steps : 

(1) With the basic velocity and temperature given, 
a value of the wavenumber is selected for a particular 
Prandtl number. 

(2) The initial values for the eigenvalue GrL and the 
disturbance velocity u$ in the vertical direction are 
assigned. The selection of the initial value for r$ should 
correspond to the primary mode of disturbance. In 
this study, u$ = 2(1 -k/M), k = 2,3,. , M, is used. 
However, one may note that the initial disturbance in 
the form of L$ = sin[(k- l)n/M], k = 1.2,. , RI + 1, 
also leads to a satisfactory result. Any arbitrary form 

of the disturbance profile satisfying the boundary con- 
ditions may be used but the profiles mentioned above 
are found to yield a faster convergence. 

(3) The finite-difference form of equation (24) is 
Solved to obtain u$. 

(4) With vf and ut known, the finite-difference form 
of equation (26) is solved to obtain 0:. 

(5) The R.H.S. of equation (25) is now known. and 
new values of uz are obtained by the finite-difference 
solution of equation (25). 

(6) A new and improved eigenvalue can now be com- 
puted by the following equation [20]. 

(Grdnew = (Grhd 
Ipf):,*1”* 

(27) 



The magnitude of the quantity L$ is readjusted by the 
following equation in order to return to the original 
order of magnitude. 

L.; = (~k*)new(G~,,)newl(Gr~)o,d. 0x1 

It is well to note that the absolute value for I$ cannot 
be determined from the linearized theory and the 
correct profile satisfying the governing equation is 

sought. 
(7) The steps (3) (6) are repeated until the following 

convergence criteria are satisfied. 

(;I = CI(C~,),,,-(C~*),,,I/C(C~),,,I < 10-6, (29) 
L k 

i:2 = l(Gr&,, -(GrL)o,dlj(GrL)nr~ < 10-s. (30) 

Numerical experiments show that only a few iterations 
are required to satisfy the above conditions. 

By varying the wavenumber u and carrying out the 
above iterative procedure. a minimum eigenvalue Grt. 
which permits a solution of the set of the disturbance 
equations, can be found. The minimum eigcnvalue and 

the corresponding wavenumber are the critical values 
which correspond to the onset of instability. 

5. THE NEUTRAL STABILITY RESULTS 
AND DISCUSSION 

5.1. Perturbed velocity and temperaturejields 

Although the primary objective of this investigation 
is to obtain the critical value of the eigenvalue for the 
onset ofstationary longitudinal rolls which are periodic 

in the spanwise direction, a study of the perturbed 
velocity and temperature fields may provide some in- 
sight into the physical mechanism of thermal instability. 
Figures 1 and 2 show the distributions of the basic 
profiles for,f”, F and t with the disturbance amplitudes 
II*. I’* and 8* superimposed for the cases of Pr = 0.7 

and 10, respectively. Since the magnitudes of the dis- 
turbance quantities cannot be determined by using the 
linear stability theory, the magnitude of the maximum 
disturbance quantity is taken to be 0.1 in the plotting. 
In order to study the decay of the disturbance quantity 
m the vertical direction. the distributions of the dis- 
turbances are also shown in Fig. 3 for Pr = 0.7 and 10 

where the largest magnitude of the disturbances u*. II* 
and O* is again taken to be 0.1. It is noted that the 
horizontal disturbance velocity u* is negative suggest- 
ing that the secondary flow also derives its energy from 

the main flow through mutual interactions as rep- 
resented by the second and third terms on the L.H.S. 
of equation (25). The profiles for a* and O* are seen 

to be qualitatively similar. 
The secondary flow pattern at the onset of instability 

is of considerable interest. For this purpose one may 
define a stream function $ with r = cl$/i~ and 
it’ = - ?I// ;i~, satisfying the continuity equation ?c/+ + 
ii~i: = 0. From the normal modes of the disturbances. 
one has r = r+(j~)e’“’ and II, = $+(_r)e““. Using r = 
itb’ir and i:* = KeL[. _1 one obtains I// = - [iz!*(y)/a] eiur. 

The physical meaning is attached only to the real part 
of the stream function and the contour lines are shown 
in Figs. 4 and 5 for Pr = 0.7 and IO, respectively. It is 
noted that the dimensionless wavelength is i. = 27[lu 
and $,,,, is taken to be one. One immediately notices 

Unstable region 

20 240 3.60 480 I 
4 
3.00 

FIG. 2. Distributions of basic quantities 
/‘. F-. 5 and perturbation amplitudes II*. 

I.*. iI* for Pr = IO. 

Fit;. 3. Profiles for perturbation amplitudes II*, I>*. 
and IJ* for Pr = 0.7 and IO. 

II 
Pr=O 7 /$&,J= I.0 
0 =o 12 

x=2& ~~~ - 
‘ 

FIG. 4. Streamline pattern of vortex disturbance for 
PI = 0.7. 

the striking resemblance between the streamline pattern 
of vortex disturbance for flow over concave wall [I I] 
and the present secondary streamline pattern caused 
by buoyancy forces as illustrated in Figs. 4 and 5. 



Table 2. Numerical result for Ge 

Pr 0.01 0.04 0.06 0.1 0.7 1.0 10 IO2 IO’ 10” 
(I* 0.040 0.050 0.050 0.060 0.11 0.14 I .72 2.95 3.90 7.20 
G$ 2472 475.9 360.3 303.9 292.5 270 75.48 13.46 2.406 I.816 

R=IO lJl+J=l.O 
a = 1.72 

c 4 7. 

x= 2lr//a 

FIG;. 5. Streamline pattern of vortex disturbance for 
Pr = 10. 
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75.35 ' ' ' ' 
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FIG. 6. Neutral stability curves, GTL vs CL for 
Pr = 0.7 and 10. 

5.2. The neutral stuhility results 

The neutral stability curves for Prandtl numbers 0.7 

and 10 are presented in Fig. 6 where the eigenvalue 

GrL is plotted against the wavenumber u. The numerical 
results for the critical (minimum) values of the Grashof 
number G$ and the corresponding wavenumber a* 
are listed in Table 2 for various Prandtl numbers for 

future reference and the effect of Prandtl number on 
the critical Grashof number Gre is shown in Fig. 7. 

Taking cognizance of the relationship CT,. = 

Grx/Rr: 2. the effect of Reynolds number on the 

critical Grashof number Grz can be studied readily 
and the results are presented in Fig. 8 using logarithmic 

coordinates. It is of particular interest to compare the 
present result with Sparrow and Minkowycz’s result 

[2] for S”,, increase in local heat-transfer rate due to 

buoyancy effect based on pure forced convection flow. 

For this purpose, the curves on Fig. 1 of [2] are also 
plotted in Fig. 8. To study the implication of the 
present result, consider the case of Prandtl number 10. 
The intersection of the two curves for Pr = IO indicates 
that at Rex = 4.8 x 102, the longitudinal vortices may 

set in at Grx = 7.9 x 10”. The present results clearly 
suggest the possible upper limit of the applicability of 
the published results [lL6]. Figure 8 also shows that 
for the lower Reynolds number flow, the critical 
Grashof number Grs is lower for a given Prandtl 
number. 

CONCLUDING REMARKS 

I. The thermal instability of the horizontal Blasius 
flow heated from below or cooled from above is studied 
by using linear stability theory based on non-parallel 

flow model whereby the variations of the basic flow 
quantities, Uh and Thr with X as well as the transverse 
velocity component V, are retained in the perturbation 

equations. Some similarity exists between the present 

problem and the Gortler problem. 
2. The result shown in Fig. 7 reveals that the mini- 

mum critical value of Grt is lower for higher Prandtl 
number. The Prandtl number effect can be explained 

HMT Vol. 19.No X G 

Frc. 7. Relationship between critical Grashof number Gr*, and Prandtl 
number. 911 
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Re,=5x105 

II I I I I I 

2 27 3 4 5 
log Re, 

FIG. 8. Critical Grashof number ((jr\*) Reynolds 

number (RLJ.~) relation and 5”,, buoyancy c&t on 
local heat transfer from [2]. 

from the definition of Gr,_. For the pure laminar forced 
convection problem the ratio of the thermal boundary- 

layer thickness over the velocity boundary-layer thick- 
ness is known to be &:o = PI ’ 3 approximately with 

6 = 5,83(\‘X.!c’~ )’ z = 5.X3L. Noting the above cx- 

pression and considering the same AT = TM,.- 7; and 
RcY,~ for two different Prandtl numbers. the ratio of the 
critical Grashof number G$ can be readily shown to 

be(Grf)I/(GrE)2 = (gB!v2)I,i(gg!l’2)2. For example. with 
(Pr)l = 0.73 and (Pr)2 = 1170, one finds the ratio 

(Grf)JGr2:), = (4.2 x 10h);‘( 1.17 x IO’) and the order 
of magnitude checks with the results from the present 
analysis. It is also noted that the temperature gradient 
(AT:&) for large Prandtl number fluid is much larger 
than that of small Prandtl number fluid. In other 
words, the unstable region for large Prandtl number 
fluid is confined to a small region inside the \&city 
boundary layer. On the other hand. for small Prandtl 
number fluid. the unstable region extends over a region 
outside the velocity boundary layer. 

3. The basic flow solution for pure forced convection 
used in this analysis is not valid when Rr,,, is small 

(say < O[lO’]). For small Rex, the terms ?‘Uh ix’ 
and i’Th;i.y,L must bc included. When Rc, = 0. the 

eigenvalue problem does not exist and ;I fret convcc- 
tion on a heated horizontal semi-inlinite tlat plate 
arises. On the other hand, the approximate limit of 
boundary-layertheory is Key -c 5 x lOi. In mterprcting 
the present results. it must be pointed out that buoyancy 
effects are considered only in the perturbation cqua- 
tions. An exact analysis would have to consider com- 
bined free and forced convection for basic tlow. This 
together with the variable property dfcct remains to be 
investigated in future. In this connection. it may bc 
mentioned that the thermal instability analysis con- 
sidering the buoyancy effects [2] in the basic tlow has 
been completed and the results will he submitted for 

publication shortly. This remark is added after (hc 
completion of the reviewing. 

1. The experimental data do not appear to be avail- 
able for comparison Mith the present results. It remains 
for future experiments to obtain the ~ortcx instability 
data. 
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INSTABILITE THERMIQUE DE L’ECOULEMENT 
DE BLASIUS SUR PLAQIJES HORIZONTALES 

Resume-On etudie l’instabilite thermique de l’icoulement de convection for&e laminaire sur une plaque 
plane horizontale semi-infinie chauffee dans des conditions isothermes par le bas, ou refroidie dans des 
conditions Cgalement isothermes par le haut, pour des perturbations prenant la forme de tourbillons 
stationnaires longitudinaux et periodiques dans le sens transversal. L’analyse utilise un modele 
d’ecoulement non parallele qui tient compte de la variation des champs de vitesse et de temperature 
dans la direction longitudinale, ainsi que de la composante de vitesse transversale dam les equations 
de perturbation. On a obtenu les valeurs critiques du nombre de Grashof GT,, = Gr~:Rzi’ pour des 
nombres de Prandtl allant de lo-’ a 10+4. L’effet des nombres de Reynolds et de Prandti sur f’instabilite 
de type tourbillonnaire dam l’ecoulement de Biasius sur une plaque horizontale se trouve ainsi i-clairci. 
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THERMISCHE INSTABILITAT DER BLASIUS-STRijMUNG 
ENTLANG WAAGERECHTER PLATTEN 

Z~~mmenfa~un~-Die thermische Instabilitat einer erzwungenen laminaren Konvektionsstr~mung 
entlang einer waagere~hten, halbunendIichen, ebenen Platte, die isotherm von unten beheizt oder von 
oben gekiihlt ist, wird untersucht. Sttirungen ergeben sich in Form von station&en Langswirbeln. die 
in Querrichtung periodisch sind. Die Analysis beruht auf dem Model1 nicht-paralleler Stromung unter 
Beriicksichtigung der Verlnderung des Grundstriimungs- und Temperaturfeldes in Stromungsrichtung 
sowie einer Romponente der Quergeschwindigkeit in den Storungsglkichungen. Die kritischenwerte de; 
Grashof-Zahl Grt = GrR/Rey’ wurden erhalten fur Prandtl-Zahlen von low2 bis 104. Die Einfliisse der 
Prandtl- und Reynolds-Zahlen auf die WirbelinstabilitBt bei der Blasius-Stromung entlang waagerechter 

Platten wurden geklart. 

TEHJIOBAII HEYCTO@IMBOCTb TEYEHMII 6nA3MYCA 
BAOJIb FOPH30HTAJIbHbIX I-IJIACTHH 

~~O~UH~-~C~enyeTC~ TeWlOBaR HeyCTO~Y~~Tb JIaMAHapHOrO ~OTOKa B yCJlOBtiRX BbIHyHC- 

LWiHOii KOHBeKUUU BROJlb rOp~3OHTa~bHO~ ~Ony6eCKOHeqHO~ IlJIOCKOii nnaCT~HbI,~3OTepM~qeCK~ 

HarpenaeMoZi c~u3y~n~~3oTep~u~~~noxnaxnaeMo~cBepxy,np~ B03hsyqeHssn ~+ophfec~aUiio- 

HapHbIX IIpOLlOnbHbIX BHXpeti,IIepHOLWiWCKB BO3HUKaKWEiX BAOJTb IIOTOKP. &'Itl aNallA3a UCnOnb- 

3yeTC~MOAe~bHe~a~~~~e~bHO~OTe~eH~~,~~TbIB~Io4aK~3MeHeH~~OCHOBHO~O IlOTOKaHTeMIIepa- 

Ty~HbIX~O~eiiCII3MeHeHEI~MnpOAO~bHO~KOO~A~H~TbI,~TaK~enO~epeYHO~KOM~OH~HTblCKOpOCTH 

B ypaBHeIi&iSX lIJ-Dl BOSMyru;eWUti. nOJIyYeHb1 KpATWieCKUe 3HaYeHIIII YWCJIa rpaCrO@t Gr=*= 
Gx*/RexJf2 iPBl 'iliCJIi3 i-IpZiHJWJI& Zi3MeHJiKWeI'OC9l OT lo-' A0 I@. BbIRBAeHO BJlHSUiWe WfCell 

npaHATJI53 W Pei%HOnbACa Ha BIlXpeByM HeyCTO~~~~Tb WIii TeYeHHI1 ka3EiyCZi BaOJlb rOpH3OH- 

TanbnO~~aCT~Hbl. 


