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Abstract—The thermal instability of laminar forced convection flow along a horizontal semi-infinite flat
plate heated isothermally from below or cooled isothermally from above is investigated for disturbances
in the form of stationary longitudinal vortices which are periodic in the spanwise direction. The analysis
uses non-parallel flow model considering the variation of the basic flow and temperature fields with the
streamwise coordinate as well as the transverse velocity component in the disturbance equations. The
critical values of the Grashof number Grf = Gr§/Re#? are obtained for Prandt] numbers ranging from
1072 to 10% The Prandtl and Reynolds numbers effects on vortex-type instability for Blasius flow along
horizontal plates are clarified.

NOMENCLATURE
a, wave number, 2n/4;
D, d/dn;
Foo =12
1, dimensionless stream function;
g, gravitational acceleration;
G, eigenvalue, Gry/Re; ;
Gry, Grashof number based on L, gB(AT)L3/v?;
Gry, Grashof number based on X, gB(AT)X 3%,
L, characteristic length, (vX/U )
M.  number of divisions in y direction;
P, pressure;
Pr, Prandt! number, v/o;
. dimensionless pressure, P'/(pUZ2/Re);
Re;, Rex, Reynolds numbers, (U, L/v) = Re¥?
and (U, X/v), respectively;
T, temperature;

U, V. W, velocity components in X, Y, Z directions;

u, v, w,

X. Y. Z,

X,y z,

dimensionless perturbation velocities,
UV, WU

rectangular coordinates;
dimensionless coordinates, (X, Y, Z)/L,

Greek symbols

&%,

B.
0,
2
v,
Ps

T,

AT,

thermal diffusivity;
coefficient of thermal expansion;

similarity variable, Y/L = Y(U ,/vX)'? = y;

dimensionless temperature disturbance.
/AT,

dimensionless wavelength of vortex rolls,
2nfa;

kinematic viscosity;

density;

dimensionless temperature, (T, — T, )/AT';
temperature difference, (T, — T,.).

Subscripts and Superscripts

*

»

critical value or dimensionless disturbance
amplitude;
prime, disturbance quantity or

907

differentiation with respect to
basic flow quantity;

value at wall;

free stream condition.

W,

8

1. INTRODUCTION

BuovyAaNCY effects in laminar forced convective flow
over a heated horizontal semi-infinite flat plate were
first studied by Mori [1] and Sparrow and Minkowycz
[2] independently. These early studies apparently
motivated further investigations [3-6] in recent years.
When a horizontal laminar boundary layer is heated
from below or cooled from above, the layer is poten-
tially unstable because of its top-heavy situation due
to the density variation of fluid with temperature. The
situation is somewhat analogous to the thermal in-
stability of plane Poiseuille flow [7-10] or the well-
known Gortler instability of curved boundary layers
f11]. The problem of hydrodynamic stability for the
laminar boundary layer involving the solution of Orr-
Sommerfeld equation has been studied rather exten-
sively in the past. In contrast, the thermal instability
problem does not appear to have been reported in the
literature.

The purpose of this study is to determine theor-
etically the conditions marking the onset of longi-
tudinal vortex rolls in a horizontal Blasius flow where
the flat plate is heated isothermally from below or
cooled isothermally from above. After the onset of
vortex rolls, the flow and temperature fields assume a
three-dimensional character and the existing flow and
heat-transfer results for laminar forced convection over
a flat plate may no longer apply. It is then obvious
that the present problem is of considerable practical
interest.

2. THE BASIC FLOW

Consideration 18 given to a horizontal laminar
boundary-layer flow with free stream velocity U, and
free stream temperature T, along a flat plate where
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the wall temperature T,(> T,) is constant. The laminar
forced convection flow problem is governed by the
following set of equations [12]

I+ =0, {1
T +EPrft =0 (2)
with the boundary conditions
SO)= f10)=1(c) =0, f(x)=10)=1 (3)
where the Blasius similarity variable is
n=Y(U.vX)"?=Y/(X)
with L(X)= (vX/U,)! 2. the stream function =
(vXU,)'"*f(n), the normalized temperature t(y)=

(T~ ) AT.—T,) and Pr = v/x= Prandtl number.
Equation(1)is solved by the fourth order Runge-Kutta
method and the temperature distribution t is

L” .exp(,/ }i j"i/d,?)
fo lexP(\wiL fd’?/)Jdn

The basic flow is a two-dimensional boundary-layer
flow which depends on streamwise and transverse
directions.

n)=1- (4)

3. THE THERMAL INSTABILITY PROBLEM
To study the vortex instability of the basic Blasius
flow heated from below (or cooled from above), the
perturbation quantities are superimposed on the basic
quantities as

U=UlX.Y)+U"Y, 2) = WX, Y)+ VY, 2Z).
W=WI(Y,Z), T=T(X Y)+0(Y 2),
P=P—p,gY+P(Y, 2Z).

As discussed in [13,14], all the flow disturbance
quantities are taken to be a function of Y and Z only
for neutral stability involving Gortler vortices. Further
details regarding the assumed form of disturbances
and some experimental fact are explained clearly in
[13]. After applying the linear stability theory and
using Boussinesq approximation, the perturbation
equations referring to the coordinate system shown in
Fig. 1 become

VoW

=0, (©)
Y cZ
(‘,\'Uh Ho (‘?Uh
U ARV JUNN Y1 7
(“'X+ b(")’+ oy Hu )
V‘V p U L v, ()
e ——
oy T ay oY g
y W1 AP,+ Vi 9)
awr_ e
"oy p Z
vy e (10)
X oY h( Y e

where Vi = ¢?/¢Y?+2/0Z? and the terms involving
Vo, éUp/éX and CT,/cX are retained. The term
U'cV,/6X 1s neglected following the boundary-layer

1.05
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0.30

FiG. I. Coordinate system and distribu-

tions of basic quantities ', F, v and

perturbation amplitudes w*, v*. * for
Pr=0.7.

approximation ¢V,/@X = 0. The nonparallelism of the
basic flow is found to be important in recent investi-
gations [ 13, 14] dealing with the vortex instability of
natural convection flow on inclined isothermal plates.
The basic flow and temperature quantities can be
written in the following form

Up= Uy f'n) V= (Us/2Re )(nf"— ) = (U,,/Rer)F.

Th= T.+ATt(y) (1

where Re,=U,L/v=(U, F=
nf'=f)/2and AT =T,—T,.

After introducing the following dimensionless vari-
ables, (x,y=4#, 2)=(X, Y, Z)/L(X), (u v, w=
(UL, VW)U, p=Pj(pU2/Rey), 0=0/AT the dis-
turbance equations can be recast into the dimensionless
form as

X /)% = Rek?

v fw

P + = 0. { 12)
Cy o Ox
Cu 1,4 4 2 1
FT —nf"u+ Rep f"v = Vu, (13)
cay
cv Lo , 0p
F—+3nf"t = Vv — —+ GO, (14)
cy or
4y 2]
F(fvizvzw —ip. (15)
cy z
THU. , |-
F——t'u+Rey ' = — V30, (16)
oy Pr

where
G = gB(AT)LRe /UL = Gri/Rey.
Gry = gBAT)L>/? = Gry/Re}?
Gry = gBATYX */v? and V? = (30> + 02/¢22



Thermal instability of Blasius flow along horizontal plates 909

Upon eliminating the dependent variable w and the
pressure terms from equations (14) and (15) using con-
tinuity equation (12), one obtains
2 au 1 " ”
\% u—F(,/T—Fzrlfu:Re,_f v, (17
}7
30

G
VZVZU—FH—VVZU—%VU“”VZU =-G-—. (9

o0
V20— PrF 7= Prt'(Reyv —4nu). (19)
Cy
The boundary conditions are u=v=1t"=60=0 at
y = 0 and 0. For the stationary longitudinal vortices
which are periodic in the spanwise direction and
neglecting the x-dependences [13,14] at the neutral
stability, the following disturbance forms are applicable.
u=u*(v)exp(iaz), v = v*(y)expliaz), 20)
8 = 67 (y)exp(iaz).
The quantity a is the wave number of the disturbance.
Substituting equation (20) into the perturbation equa-
tions (17)—(19), the following set of equations results.

[(D*~a®)—FD+4nf"Ju* = Rerfv*, (21)
[(D*—a??— F(D?—aD)
—nf'(D*—a’)]v" = a’Go", (22)
((D?~a?)~PrFD]0" = Pr'(Repv® —dqu™), (23)
where D =d/dy. By setting u’ =u* Repv* =v*
6% = 6* and GRe,, = Gry, the parameter Re; does not

appear explicitly and the resulting system of equations
becomes

[(D*—a®)—FD+nf"Ju* = fv*, (24)
[(D*—a?P ~ F(D® —a?D)
—mnf"(D* —a)]o* = a®Gr 0%,  (25)
[(D?—a*)— PrFD]0* = Pro'(v* —inu*).  (26)
The boundary conditions are
w=v*=Dv*=0*=0atn=0and . (27)

For the conventional parallel flow assumption for
the basic flow, the terms involving F as well as the
x-derivatives of the basic quantities are neglected. In
the disturbance equations, the terms on the R.H.S.
may be regarded as the driving terms. Equations (24)-
(27) form an eigenvalue problem and the solution will
be effected by a numerical method.

4. METHOD OF SOLUTION

The fourth-order finite-difference scheme used in
this study is due to Thomas [15] in his study on the
stability of plane Poiseuille flow and the detailed
derivations are given by Chen [16] in a study on the
hydrodynamic stability of developing flow in a parallel-
plate channel. In the present finite-difference solution,
a finite value of # must be prescribed to satisfy the
boundary conditions at # = co [17]. For this purpose,
two cases are considered depending on the value of
Prandtl number. When Pr > 1, the condition at infinity
for 6* is replaced by 6* = 0 at n = y, corresponding

to1 < 1078 since as 7 — 0 one has v — 0. Equation (26)
reveals that the flow field is stable for the region
#=ny~oc. On the other hand, when Pr <1 the
boundary condition «* = Qs set at n = 1, correspond-
ing to (f'—1) < 1078 and the conditions v* = 0* = 0
are set at # = n;(> ;) corresponding to 7 < 1078, As
f"— 1, one has f"—0 and equation (24) shows that
u* = 0 for the region n =#n, ~ oc. Noting that with
Pr <1 the thickness of the thermal boundary layer is
larger than that of the hydrodynamic boundary layer,
one obtains r* = #* =0 for the region n=n, ~x
from equations (25) and (26). The satisfactory values
for the step size Ay, the number of divisions M and
the end position #; for various Prandtl numbers are
found by numerical experiments and the results are
listed in Table 1 with n;, fixed at , = 10.4.

Table 1. Numerical data for Ay M and 5,

Pr 001 0.1 0.7 1.0 10 10 10°
Ay 004 004 004 004 002 001 001
M 1600 650 275 260 250 200 105
m 64 24 11 104 50 20 1.05

The finite-difference technique transforms equation
(25) and its boundary conditions into a quidiagonal
system of matrix for a set of algebraic equations and
similarly two diagonal systems result from equations
(24) and (26) and their boundary conditions. The
numerical solutions of the quidiagonal and tridiagonal
systems are reported in [18] and [19]. respectively.
and will not be elaborated here.

The iterative procedure for the simultaneous solution
of the three perturbation equations consists of the
following main steps:

(1) With the basic velocity and temperature given,
a value of the wavenumber is selected for a particular
Prandtl number.

(2) The initial values for the eigenvalue Gr, and the
disturbance velocity v in the vertical direction are
assigned. The selection of the initial value for v should
correspond to the primary mode of disturbance. In
this study, vF =2(1—k/M), k=2,3,..., M, is used.
However, one may note that the initial disturbance in
the form of v¥ =sin[(k—)a/M}, k=1.2,... . M+1,
also leads to a satisfactory result. Any arbitrary form
of the disturbance profile satisfying the boundary con-
ditions may be used but the profiles mentioned above
are found to yield a faster convergence.

(3) The finite-difference form of equation (24) is
solved to obtain uf.

(4) With p¥ and uf known, the finite-difference form
of equation (26) is solved to obtain 6.

(5) The R.H.S. of equation (25) is now known, and
new values of vf¥ are obtained by the finite-difference
solution of equation (25).

(6) A new and improved eigenvalue can now be com-
puted by the following equation [20].

|Z(Uif %am|1”2

G new — G o . 5 -
(Gry) (Grr)ow IZ(D;‘)%‘W![,Z
k

27
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The magnitude of the quantity ¢} is readjusted by the
following equation in order to return to the original
order of magnitude.

U;(k = (Ul?)new(GrL)new/(GrL)old- (28)

It is well to note that the absolute value for ¢f cannot
be determined from the linearized theory and the
correct profile satisfying the governing equation is
sought.

(7) The steps (3)--(6) are repeated until the following
convergence criteria are satisfied.

by = Z I(l7l’(k)ncv~' - (Uick)(\ld |/Z (U?)ncw‘ < 10761 (29)
k k

&2 = ‘(GrL)nev« '_(Grl,)nld,/‘(G"L)new< 1078 (30)

Numerical experiments show that only a few iterations
are required to satisfy the above conditions.

By varying the wavenumber ¢ and carrying out the
above iterative procedure, a minimum eigenvalue Gr.
which permits a solution of the set of the disturbance
equations, can be found. The minimum eigenvalue and
the corresponding wavenumber are the critical values
which correspond to the onset of instability.

5. THE NEUTRAL STABILITY RESULTS
AND DISCUSSION
5.1. Perturbed velocity and temperature fields

Although the primary objective of this investigation
is to obtain the critical value of the eigenvalue for the
onset of stationary longitudinal rolls which are periodic
in the spanwise direction, a study of the perturbed
velocity and temperature fields may provide some in-
sight into the physical mechanism of thermal instability.
Figures 1 and 2 show the distributions of the basic
profiles for f”, F and t with the disturbance amplitudes
u*, v* and 6* superimposed for the cases of Pr= 0.7
and 10, respectively. Since the magnitudes of the dis-
turbance quantities cannot be determined by using the
linear stability theory, the magnitude of the maximum
disturbance quantity is taken to be 0.1 in the plotting.
In order to study the decay of the disturbance quantity
in the vertical direction, the distributions of the dis-
turbances are also shown in Fig. 3 for Pr = 0.7 and 10
where the largest magnitude of the disturbances u*, v*
and 6* is again taken to be O.1. It is noted that the
horizontal disturbance velocity u* is negative suggest-
ing that the secondary flow also derives its energy from
the main flow through mutual interactions as rep-
resented by the second and third terms on the L.H.S.
of equation (25). The profiles for u* and ¢* are seen
to be qualitatively similar.

The secondary flow pattern at the onset of instability
is of considerable interest. For this purpose one may
define a stream function  with v = Qy/dz and
w = — Cy/Cy satisfying the continuity equation ¢v/éy +
(w/Cz = 0.From the normal modes of the disturbances,
one has v = r*(y}e'™ and Y = *(y)e'. Using v =
YiCzand ¥ = Repr *, one obtains ¥ = — [iv*(y)/a] €.
The physical meaning is attached only to the real part
of the stream function and the contour lines are shown
in Figs. 4 and S for Pr = 0.7 and 10, respectively. It is
noted that the dimensionless wavelength is 4 = 2n/u
and Y., is taken to be one. One immediately notices
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F1G. 4. Streamline pattern of vortex disturbance for
Pr=0.7.

the striking resemblance between the streamline pattern
of vortex disturbance for flow over concave wall [11]
and the present secondary streamline pattern caused
by buoyancy forces as illustrated in Figs. 4 and 5.



Table 2. Numerical result for Grf

Pr 0.01 0.04 0.06 0.1
a* 0.040 0.050 0.050 0.060
Gr¥ 2472 4759 360.3 303.9

0.7 1.0 10 10 10° 10*
0.11 0.14 1.72 295 3.90 7.20
2925 270 75.48 13.46 2.406 1.816

Pr=10 Yo O
a =172

A=2m/a
F1G. 5. Streamline pattern of vortex disturbance for
Pr = 10.
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F1G. 6. Neutral stability curves, Grp vs a, for

5.2. The neutral stability results

The neutral stability curves for Prandtl numbers 0.7
and 10 are presented in Fig. 6 where the eigenvalue
Gry is plotted against the wavenumber «. The numerical
results for the critical (minimum) values of the Grashof
number Grf and the corresponding wavenumber a*
are listed in Table 2 for various Prandtl numbers for
future reference and the effect of Prandtl number on
the critical Grashof number Grf is shown in Fig. 7.

Taking cognizance of the relationship Gr. =
Gry/Rey?. the effect of Reynolds number on the
critical Grashof number Gr} can be studied readily
and the results are presented in Fig. 8 using logarithmic
coordinates. It is of particular interest to compare the
present result with Sparrow and Minkowycz's result
[2] for 5°; increase in local heat-transfer rate due to
buoyancy effect based on pure forced convection flow.
For this purpose, the curves on Fig. | of [2] are also
plotted in Fig. 8. To study the implication of the
present result, consider the case of Prandtl number 10.
The intersection of the two curves for Pr = 10 indicates
that at Rey = 4.8 x 102, the longitudinal vortices may
set in at Gry = 7.9 x 10°. The present results clearly
suggest the possible upper limit of the applicability of
the published results [ 1-6]. Figure 8 also shows that
for the lower Reynolds number flow, the critical
Grashof number Gr% is lower for a given Prandtl
number.

CONCLUDING REMARKS

1. The thermal instability of the horizontal Blasius
flow heated from below or cooled from above is studied
by using linear stability theory based on non-paraliel
flow model whereby the variations of the basic flow
quantities, Uy, and T,, with X as well as the transverse
velocity component V; are retained in the perturbation
equations. Some similarity exists between the present
problem and the Gortler problem.

2. The result shown in Fig. 7 reveals that the mini-
mum critical value of Grf is lower for higher Prandtl

Pr=0.7 and 10. number. The Prandt] number effect can be explained
10®
o Unstable
102
* - :
(3 -
o Stable
o'
Ll Lol Lo eaeal Loyl Lo
2 10" 10° 10! 10° i0*
Pr
F1G. 7. Relationship between critical Grashof number Gr% and Prandtl

HMT Vol. 19. Ne. & - G

number.
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*
X

log Gr

log Rey

Fic. 8. Critical Grashof number (Gr§)-Reynolds
number (Rey) relation and 5%, buoyancy cffect on
local heat transfer from [27].

from the definition of Gr,. For the purc laminar forced
convection problem the ratio of the thermal boundary-
layer thickness over the velocity boundary-layer thick-
ness is known to be 6470 = Pr~''* approximately with
5= 583(vX/U,)"* =583 Noting the above ex-
pression and considering the same AT = T,,— T, and
Rey for two different Prandt! numbers, the ratio of the
critical Grashof number Grf can be readily shown to
be (Gri)AGrE); = (gB/v2h/(gh/v?)2. Forexample. with
(Pr); =0.73 and (Pr), = 1170, one finds the ratio
(GFENWAGHE), = (4.2 x 10°)/(1.17 x 10*) and the order
of magnitude checks with the results from the present
analysis. It is also noted that the temperature gradient
(AT /d7) for large Prandtl number fluid is much larger
than that of small Prandtl number fluid. In other
words, the unstable region for large Prandtl number
fluid is confined to a small region inside the velocity
boundary layer. On the other hand. for small Prandtl
number fluid, the unstable region extends over a region
outside the velocity boundary layer.

3. The basic flow solution for pure forced convection
used in this analysis is not valid when Rey is small
{say < O[10%]). For small Rey, the terms U,/ 0 X?
and *2T,/0X 2 must be included. When Rey = 0. the
eigenvalue problem does not exist and a frec convec-
tion on a heated horizontal semi-infinite flat plate
arises. On the other hand, the approximate limit of
boundary-layer theory is Rey < 5 x 10°. In interpreting
the present results, it must be pointed out that buoyancy
effects are considered only in the perturbation equa-
tions. An exact analysis would have to consider com-
bined free and forced convection for basic flow. This
together with the variable property cffect remains to be
investigated in future. In this connection, it may be
mentioned that the thermal instability analysis con-
sidering the buoyancy effects [2] in the basic flow has
been completed and the results will be submitted for

publication shortly. This remark is added after the
completion of the reviewing.

4. The experimental data do not appear to be avail-
able for comparison with the present results. It remains
for future experiments to obtain the vortex instability
data.
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Thermal instability of Blasius flow along horizontal plates

INSTABILITE THERMIQUE DE L’ECOULEMENT
DE BLASIUS SUR PLAQUES HORIZONTALES

Résumeé— On étudie instabilité thermique de 'écoulement de convection forcée laminaire sur une plaque
plane horizontale semi-infinie chauffée dans des conditions isothermes par le bas, ou refroidie dans des
conditions également isothermes par le haut, pour des perturbations prenant la forme de tourbillons
stationnaires longitudinaux et périodiques dans le sens transversal. L'analyse utilise un modéle
d’écoulement non paralléle qui tient compte de la variation des champs de vitesse et de température
dans Ia direction longitudinale, ainsi que de la composante de vitesse transversale dans les équations
de perturbation. On a obtenu les valeurs critiques du nombre de Grashof Gry = Gry/Re¥? pour des
nombres de Prandt! allant de 1072 & 107 %, L'effet des nombres de Reynolds et de Prandtl sur linstabilite
de type tourbillonnaire dans 'écoulement de Blasius sur une plaque horizontale se frouve ainsi éclairci.

THERMISCHE INSTABILITAT DER BLASIUS-STROMUNG
ENTLANG WAAGERECHTER PLATTEN

Zusammenfassung—Dic thermische Instabilitdt einer erzwungenen laminaren Konvektionsstromung
entlang einer waagerechten, halbunendlichen, ebenen Platte, die isotherm von unten beheizt oder von
oben gekiihlt ist, wird untersucht. Storungen ergeben sich in Form von stationéiren Lidngswirbeln, die
in Querrichtung periodisch sind. Die Analysis beruht auf dem Modell nicht-paralleler Strémung unter
Beriicksichtigung der Verdnderung des Grundstromungs- und Temperaturfeldes in Strémungsrichtung
sowie einer Komponente der Quergeschwindigkeit in den Storungsgleichungen. Die kritischen Werte der
Grashof-Zahl Gr¥ = Gr}/Re¥*? wurden erhalten fiir Prandti-Zahlen von 10~ 2 bis 10, Die Einflisse der
Prandtl- und Reynolds—Zahlen auf die Wirbelinstabilitit bei der Blasius-StrOmung entlang waagerechter
Platten wurden geklart.

TEIUJIOBASL HEYCTOMUYMUBOCTb TEYEHUS BJIABUYCA
BJ10OJ1b TOPU30OHTAJIBHBIX MJIACTHH

Annoranus — Vccnenyercs tennoBas HEYCTOMMMBOCTE NAMUHADPHOIO NOTOKA B YC/IOBHHX BBIHYX-
ACHHOW KOHBEKUMH BIOJIb TOPH3OHTANBHON nonybeckoHeHHOH TIOCKOH NAACTHHB, H30TEPMBYECKH
HarpesacMoil CHU3Y MM H30TEPMUYECKH OXJIAKAaeMOol CBEPXY, NIPH BO3MYIIEHHH B GOPME CTALIHO-
HapHBIX IIPOAOIBHBIX BHXPEH, MEPHOAMYECKH BO3ZHHUKAIOLUIMX BAOJL NMOTOKA. A analw3a HCHOIb-
3yeTCsl MONENb Henapasvie/IbHOTO TEYEHHS, YYH THIBAOIIAS H3MEHEHUE OCHOBHOTO NOTOKA M TEMIIEpa-
TYPHBIX ITOJIEH C H3IMEHEHHEM IIPONOIBHON KOOPIHHATEL, 4 TAKXKE NONEPEYHONR KOMIIOHEHThI CKOPOCTH
B ypaBHeHMsX Ona Bo3mymuenui. TlonydeHsl kpuTHdeckue 3HaveHHs uucna Ipacroda Gro*=
Gx*/Rex®'* nns wucna [lpaunrtnas, usMmenmolerocst ot 10-2 pgo 10*. BuissgeHo B/IMSHHME uHCen
Ilpaunrns u Pefidonbaca Ha BHXpEBYHO HEeyCTOWYMBOCTH IS TeuyeHHWs bnaimyca BIOJL TOPH3OH-
TaXbHON NNACTHHEL
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